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On the onset of avalanches in flooded loose sand
By Gerd Gudehus

Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe,
D-76128 Karlsruhe, Germany

Loose flooded and nearly saturated sand deposits from lignite mining in East Ger-
many tend to collapse along slopes, leading to devastating avalanches. The local
state of the soil is characterized by volume fractions and partial stresses as is usual
in soil mechanics. In addition, an intergranular strain is introduced that is needed
for the analysis of wave propagation. For the investigation of the field state in situ,
frozen samples have sometimes been taken, and three novel sounding methods have
been introduced: vibratory penetration; large vane with torsion shocks; and pres-
sure shocks by airgun. The evolution of field states is described by a hypoplastic
constitutive relation, the parameters of which can be estimated from granulometric
properties. The influence of gas bubbles on the response to undrained loading cycles
is explained. The loss of stability can be analysed by estimating the possible spon-
taneous release of kinetic energy, whereas conventional methods are insufficient. A
deeper understanding of the loss of stability is obtained by analysing the propagation
of transversal and longitudinal waves which are coupled by dilatancy or contractancy.
Finally, a scenario for the onset of an avalanche is proposed that includes the forma-
tion of a gas cushion.

Keywords: sand avalanche; dynamic sounding; gas bubbles; hypoplasticity;
equilibrium, loss of; wave propagation

1. Introduction

Vast areas of deposits are left from lignite mining in Central and (former) East
Germany. They are typically ca. 30–60 m thick and loosely filled, leaving excavations
corresponding to the removed coal. They consist mainly of fine quartz sand with
a grain size of ca. 0.2 ± 0.1 mm. Minor fractions of small lignite particles and silt
are found almost everywhere, and the pore water is initially acid (pH = 3). In some
places, major fractions of silt and clay occur. These deposits have been or are flooded
by rising ground water and are thus saturated up to ca. 80–90%.

The loosest sandy parts tend to flow out catastrophically along a total slope line
of ca. 180 km. Minor disturbances have triggered avalanches of ca. 102–107 m3, dev-
astating the landscape and sometimes killing people. It was decided to stabilize
the endangered zones by densification. Blasting and vibroflotation are underway,
but these sometimes releases new avalanches. Investigation and control concentrate
on density but pore pressures and ground velocities are also monitored. In a joint
research project, the geotechnical institutes of the Mining Academy at Freiberg and
the University of Karlsruhe developed methods for investigation, design and control.

Model tests with loose saturated sand clearly show the onset of avalanches (fig-
ure 1). In contrast to the field situation, the sand was poured in under water and
shaped to a slope by cautious sucking off. A minor shock or even a noise was enough
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Figure 1. Model slope under water (a) before and (b) after minute shock.

to trigger a collapse that therefore may be considered as spontaneous liquefaction.
This occurs if the void ratio exceeds a certain critical value which depends on the
slope angle, the surcharge and the sequence of filling.

Other small-scale tests have been made on loose unsaturated sand deposits with a
shallow slope close to free water. A first indication of the response can be obtained
by treading repeatedly on the surface (figure 2). Under first loading, the surface
develops a bulge which partly disappears with unloading. Under second loading, the
foot sinks far deeper, releasing water with gas and grains. For a short time after first
loading, the ground is thus denser and softer, which might appear paradoxical. This
is only observed if the flooded part of the ground contains gas bubbles. After some
time no more water is released, and the ground remains stiffer.

This paper is an overview of how the onset of avalanches of the type indicated
above can be explained from a soil mechanics point of view. For characterizing the
state of such deposits, we first consider representative volume elements of so-called
simple grain skeletons with volume fractions and partial stresses. An intergranular
strain is introduced as a further state variable, and limitations due to fluctuations
are briefly discussed. Volume fractions in situ have sometimes been determined from
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On the onset of avalanches in flooded loose sand 2749

Figure 2. Loose flooded sand with gas bubbles under (a) first- and (b) second-foot load.

frozen samples. Density estimates are obtained from penetration sounding, including
a novel vibratory device. Transducers for pore pressure, for earth pressures in a few
places, and for ground velocities have been used. Two novel methods of dynamic
probing have been developed: shock vane sounding with shear waves traced over
more than 100 m; and pneumatic-dynamic sounding with compression waves caused
by an airgun.

Constitutive relations are the backbone and peculiarity of our mechanical models.
The so-called hypoplastic relation is an equation for the evolution of intergranu-
lar stress components depending on the current intergranular stress, void ratio and
stretching due to skeleton rearrangements. An extended concept with an intergranu-
lar strain is briefly indicated. Granular phase transitions, including collapsible, con-
tractant/dilatant behaviour and decay, are modelled within this framework. The few
material parameters are easily determined. Gas bubbles are then introduced that
cause a reduction of skeleton pressure under densification with constant total pres-
sure if there is no drainage. Simultaneous densification and softening is also obtained
by shear stress or oedometric pressure cycles.

The loss of equilibrium is first considered with respect to a representative volume
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element. Conventional statical limit states are insufficient for the present purpose
but Drucker’s criterion of material stability is of some use. Hill’s criterion is more
relevant as it indicates the possible spontaneous release of kinetic energy. This has
been applied to the analysis of slope stability by assuming simplified stress fields
and kinematic chains. By improving the criterion to take account of the initial field
of stress components, void ratios and gas fractions, rather realistic predictions of
states prone to spontaneous liquefaction are obtained. A better approach is obtained
by analysing the propagation of disturbances in the ground. The propagation of
plane pure shear waves leads to unlimited flow for the same states which are able to
release kinetic energy. This coincidence holds only approximately for certain cases
of plane shearing with volume changes enabled by gas bubbles. The propagation
leaves residual changes of skeleton stress and increases in water pressure. The latter
are accumulated in case of insufficient drainage, so that states prone to spontaneous
liquefaction can be reached. The skeleton can then decay, and suspension bubbles
spread due to stress redistribution. The mobile gas bubbles rise and accumulate in
gas cushions. This is a kind of chain reaction which can lead to the onset of sand
avalanches that can slide faster on gas than upon water, as long as the gas cushions
are not drained.

2. States

State variables are introduced with a representative volume element. Imagine a so-
called simple grain skeleton that is characterized sufficiently by second-order stress
and strain tensors. We thus presume a simple material in the sense of continuum
mechanics (called mean-field approach by physicists). From the solid volume fraction
αs = Vs/V the void ratio,

e = (1− αs)/αs,

is obtained. The gas volume fraction αg = Vg/V is distributed in bubbles or channels.
Neglecting soluble components and condensed grain bridges, αs represents the grain
volume, and the volume fraction of water is αw = 1−αs−αg, which can be replaced
by the degree of saturation, S = αw/(1− αs).

Formally, as for mixtures of gases or liquids, partial stresses can be introduced.
The Cauchy stress tensor of the solid skeleton may be named Ts = −Ps. Neglecting
the intergranular osmotic (or pectic or electrocapillary) pressure (Gudehus 1996b)
and the tension from condensed grain bridges, the skeleton stress is identical with
Terzaghi’s effective stress, Ps = P ′. Ts and the pore-water pressure, pw, can be
combined with the total stress by

T = Ts − pw1,

which is called the principle of effective stress in soil mechanics. This is justified in
the case of full saturation, and also with gas bubbles, as long as grains and water
can be considered as unchanged by water pressure. The gas pressure, pg, differs from
pw due to the surface tension, γL, by

pg − pw = γL/dg,

with the bubble diameter, dg. The difference is negligible, i.e. pg ≈ pw, with grain
sizes above ca. 10−3 m.
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Figure 3. Grain skeleton with contact flats constituting the intergranular strain.

The state of a simple grain skeleton is not sufficiently characterized by Ts and e in
general. An intergranular strain, δ, has been introduced by Niemunis & Herle (1997).
A micro-mechanical explanation is proposed here with the aid of figure 3. Each
instantaneous plastic contact flat may be transformed into a relative intergranular
displacement, ∆uf , by means of the unit vector d, determined from a network con-
necting the grain centres, and by the substitute ellipsoidal caps of undeformed con-
tacts. As with any intergranular displacement (Bagi 1996), the intergranular strain
is then obtained by summation:

δ =
1
V

∑
∆uf ⊗ d.

δ is thus a microscopically well-defined, but macroscopically hidden, variable.
The proposed state variables have only a limited range of applicability. The Cauchy

stress has to be extended by non-symmetric and couple terms in order to model shear
localization (Gudehus 1998). Grain rotations are thus no longer determined by the
velocity gradient. Fluctuations of grain contact forces, displacements and rotations
are consequently higher. More important for loose deposits are macropores, which
are defined by a size exceeding the neighbouring grain size. They are stable during
filling due to the capillary action of water, and after flooding due to minute condensed
grain bridges. We have neglected them until now for simplification. The osmotic
intergranular pressure can be neglected, as rapid collapses and avalanches occur only
in the absence of a substantial fraction of clay.

Turning now to site investigations, one has to realize the difficulties involved in
taking samples from collapsible ground. Disturbed continuous tube samples can,
at best, supply granulometric information which helps to define layers and pockets.
Freezing with nitrogen from tubes in the ground is expensive, as is subsequent drilling
of frozen cores. However, they give rather precise volume fractions and can reveal
macropores and more complicated textures.

Field values of the void ratio, e, are normally estimated from static penetration
resistance. With a theory of cavity expansion based on hypoplasticity, we are able to
estimate e more precisely from granulometric properties and skeleton stress (Cud-
mani 1996). By measuring the excess pore pressure alongside the static penetration,
the fraction of finer grains can be estimated. Radiometric (γ–γ) sounding can give e
if the carbon fraction is allowed for. We have developed a novel vibratory sounding
device which is lighter and faster than the static one and leads to e with a mechanical
model with due allowance for pw (figure 4).

Pore pressures are measured by the usual transducers, and by hydrophones in
dynamic experiments. Earth pressures have been measured in a few cases by vertically
placed Glötzl cells, but the difficulty of placement and errors associated with bedding
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Figure 4. Set-up for vibratory sounding.

of the cells causes some scatter in observations. Deviations from the at-rest state of
undisturbed sedimentation have been observed and explained.

Ground velocities are measured in all directions by embedded geophones. They
are used for control and can also indicate acoustic emissions. For dynamic probing
of the ground, we have developed two novel concepts. A dynamic shear sounding of
the sand is achieved (figure 5) by using a cruciform vane of ca. 0.3 m diameter and
ca. 4 m length vibrated to a depth of up to ca. 12 m. Torsional shocks are produced
by a cross head and transferred to the vane by a tube. The shear wave velocity, cs,
is measured by rows of geophones (up to a distance of 110 m). e can be estimated
reliably from cs with the aid of estimated skeleton pressures. A decay of cs indicates
softening of the ground, and full liquefaction is indicated by cs = 0.

For a pneumatic-dynamic sounding, a quadratic tube of width 0.2 m and length
18 m with a shielded airgun at the bottom, is lowered and lifted to desired depths by
a crane and a vibrator (figure 6). The air-pressure shocks transferred to the ground
generate a suspension bubble so that pure pressure waves are transmitted. Ground
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On the onset of avalanches in flooded loose sand 2753

Figure 5. (a) Large field vane and (b) device for torsional shocks.

velocities and water pressures are measured at distances from ca. 2 to 20 m. With
small shocks the accumulation is small, and the velocities indicate e. With repeated
large shocks and without drainage, the suspension bubble size and the pore pressure
increase, thus indicating the danger of liquefaction. We also hope to determine the
gas content from the propagation speed within the suspension and e from the growth
of the bubble.

The state of the deposit can also be simulated by computer calculations with finite
elements using hypoplastic, capillary and hydrodynamic constitutive relations. This
long-winded and somewhat suspect approach is of use in combination with field data
and filling records and can give some insight when studying mechanisms.

3. Constitutive relations

The constitutive concept of hypoplasticity, which was mainly developed by Kolymbas
(1991), may be briefly introduced here. The stretching rate, D, related to rearrange-
ments of the grain skeleton, is linked with an objective skeleton stress rate T̊ s by the
evolution equation (Gudehus 1996a)

T̊s = fs[L(T̂s,D) + feN(T̂s)‖D‖].
Herein, a stress ratio tensor, T̂s = Ts/ps, is defined with the mean pressure ps =
− trTs/3. L is a linear function of D, whereas the second term is nonlinear in D via
‖D‖ =

√
trD2.

L and N depend on T̂s and the critical friction angle ϕc. The ‘density factor’ fe
is defined by

fe =
(
e− ed

ec − ed

)α
,

with a material constant α ≈ 0.2 ± 0.1. fe contains limit values of the void ratio
e: the critical one, ec; and the one for maximal densification, ed. Critical states are
characterized by zero stress rates for isochoric constant stretching rates, i.e.

T̊s = 0 for D = Dc, with trDc = 0.
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Figure 6. Pneumatic-dynamic sound with airgun before lowering.

With fe = 1 and e = ec, T̊ s = 0 leads to stress ratios which are determined by the
stretching rate ratios and the critical friction angle,

e = ec, T̂s = T̂sc(ϕc,Dc/‖Dc‖).
The critical void ratio depends on the mean pressure

ec = ec0 exp[−(3ps/hs)n],

with an exponent n ≈ 0.3 ± 0.1, and a factor ec0 = ec for ps = 0. ed has the same
pressure dependence,

ed = ed0 exp[−(3ps/hs)n],

and is reached by small-amplitude strain cycles with constant mean pressure. For an
isotropic compression starting from the loosest possible state, the void ratio has the
same pressure dependence,

ei = ei0 exp[−(3ps/hs)n].

A material pressure scale is introduced by the granulate hardness, hs, which typically
ranges from 106 to 109 Pa for mineral grains. By comparing this compression law with
the constitutive relation above, the stiffness factor, fs, is obtained as

fs = hs(ps/hs)1−ng(e),
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On the onset of avalanches in flooded loose sand 2755

Figure 7. Granular phase diagram (for A to G see text).

with a function g(e) obtained from the ei− ps relation. T̊ s is therefore homogeneous
of order 1−n in Ts (strictly so only for fe = const.). Representations for the functions
L and N are outlined in some publications (Bauer 1996; von Wolffersdorff 1996).

The hypoplastic relation supplies strength and stiffness, depending on the state
variables Ts and e and the stretching rate D, which have been used successfully for
various initial boundary-value problems. The few material constants hold for a wide
spectrum of states and stretching rates and are easily determined (Herle & Gudehus
1998). ϕc comes from the inclination of a loose free slope or from simple shear tests.
The limiting void ratios, ec0 and ed0, are practically the same as the conventional
index values, emax and emin. hs and n are determined with an oedometer test with
loose initial state. α is derived from triaxial peak shear strength. All constants can
be estimated from granulometric properties.

The hypoplastic relation is characterized by some asymptotic properties (Gudehus
1997). In a mathematical sense, they can be thought of as attractors. In a physical
sense, one can speak of granular phase transitions which can be illustrated by a phase
diagram (figure 7). For too-high void ratios, a simple skeleton is impossible (A). The
grains constitute a suspension in gas or liquid, or delicate fractal skeletons with
macropores. For constant mean pressure, ps, states with ec < e 6 ei are collapsible,
i.e. the skeleton contracts for all stretching rates. For void ratios in the range ed <
e < ec and again ṗs = 0, the skeleton contracts and afterwards dilates (C). (Dilation
leads to spontaneous shear localization (Gudehus 1998).) Stretching with repeated
reversals and small amplitudes in each monotonous section, and with constant mean
pressure, causes a densification (D). The asymptote, e = ed, holds for vanishing
amplitudes and cannot therefore be reached. States in the range ed < e < ec can be
reached by rearrangement, and contractancy is stronger than dilatancy (Goldscheider
1975).

Other granular phase transitions occur with constant volume. For skeletons looser
than critical, e > ec, the mean pressure drops with all stretching rates until the
skeleton decays (E). For ed < e < ec, a reduction of ps is obtained with stretching

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2756 G. Gudehus

Figure 8. Cyclic shear loading of an undrained element with gas bubbles.

reversals and can again lead to a decay (F). These two cases can be realized with
saturated undrained skeletons. e > ec can be linked with spontaneous liquefaction,
lower void ratios with cyclic softening. A pressure release with constant volume can
lead to e < ed (G). Subsequent stretching with ṗs = 0 leads to a fractal extension
pattern, as with dry masonry, so that the range of simple grain skeletons is left.

The hypoplastic relations have been extended with an intergranular strain, δ, in
order to avoid an unlimited accumulation of stretching or stress changes under cycles
with small amplitudes (Niemunis & Herle 1997). The stretching rate is no longer due
solely to skeleton rearrangements, and Ts and e do not sufficiently characterize the
state. Evolution equations have been proposed that express T̊ s and δ̊ as functions of
Ts, e, δ and D. The grains are considered to be elastoplastic with variable contact
flats but granulometrically permanent. The constitutive relations, therefore, have
features from elastoplasticity, leading to an elastic range for cyclic stretching with
a vanishingly small amplitude so that skeleton rearrangements can be excluded. For
large monotonous stretching amplitudes, the hypoplastic relation as shown above is
regained, as δ is fully determined by Ts and e, so that it can then be dropped. The
few further material constants are determined from resonant column or cyclic triaxial
tests. Initial values of δ are not needed due to the favourable asymptotic properties
of the constitutive concept.

Pore water and gas bubbles in it can now easily be added. Because of pg ≈ pw
(justified in the previous section), the gas equation can be written as

−ṗw/pw = V̇g/Vg.

Without volume changes of grains and pore water, and without drainage, we have
V̇ = V̇g and V̇s = V̇w = 0, so that

ṗw/p = −ė(1 + e)/αg

holds. In the case of constant total pressure (ṗ = 0), this means that densification
(ė < 0) implies skeleton pressure reduction, ṗs = −ṗw < 0. This also holds for total
stress cycles without drainage.

Shearing with constant mean pressure and cyclic shear stress is illustrated in fig-
ure 8. The height, and thus the void ratio, goes down first and is not fully regained
after the reversal. The skeleton pressure is reduced. More surprising is the response
to an oedometric pressure cycle (figure 9). The height develops nearly as in the pre-
vious case, but total and effective pressure paths are more intricate. The skeleton
behaviour is modelled in both cases with the hypoplastic relation.
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On the onset of avalanches in flooded loose sand 2757

Figure 9. Oedometric loading cycle of an undrained element with gas bubbles.

Figure 10. Stress and stretching of a rectangular element.

4. Loss of equilibrium

Let us first consider the instability of a volume element under rectangular extensions
(figure 10). For simplicity, we restrict ourselves to only two pressure components,
p1 and p2, two variable lengths, d1 and d2, and the increments of them indicated
by ∆. Conventionally, statical limit states are defined with ∆p2 = 0 by ∆p1 = 0
for a plateau or critical state, and with ∆p1 < 0 for a peak state with subsequent
softening. The stress condition related to ∆p1 = 0 makes sense for stationary flow,
although it is not always valid even then (counterexample: plug flow). A collapse, i.e.
the spontaneous appearance of accelerations, is indicated by ∆p1 < 0 for ∆p2 = 0
in this case (apart from geometrical effects), but not for other stress and stretching
paths.

Drucker’s postulate of material stability can be written here as

∆2W = ∆pi1∆d1/d1 + ∆pi2∆d2/d2 > 0.

For test deformations, ∆d1 and ∆d2, with unchanged external pressure components,
∆pe1 = ∆pe2 = 0. The internal pressure increments, ∆pi1 and ∆pi2, are derived from
∆d1 and ∆d2 with a constitutive relation. The conventional limit state is implied
by this criterion, which also serves as a base for elastoplastic relations. It is not
beyond all doubt, however, for softening materials, particularly if they are prone to
volumetric collapse as loose flooded sand.

Hill’s criterion,
∆2W = ∆2We −∆2Wi > 0,
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Figure 11. Simplified onset of an avalanche.

supplies a better approach. It indicates a possible spontaneous generation of kinetic
energy under test deformations, here ∆d1 and ∆d2. The second-order increment of
external work is

∆2We = ∆pe1∆d1/d1 + ∆pe2∆d2/d2 + (p1 + p2)∆d1∆d2/(d1d2).

Thus the criterion is not restricted to unchanged external pressure components
during collapse, or to unchanged boundary forces such as Drucker’s. The second-
order increment of internal work is, as before,

∆2Wi = ∆pi1∆d1/d1 + ∆pi2∆d2/d2.

with the internal pressure components ∆pi1 and ∆pi2 derived from a constitutive
relation. The third term in ∆2We can be neglected for rather stiff materials, but not
always for collapsible soft soils.

The increments can be replaced by rates because of rate independence, i.e. vis-
cosity is assumed to be negligible. Thus, only ratios of stress and stretching rates
are relevant for a possible excess of kinetic energy. The generalization with tensor
components and non-homogeneous fields is straightforward, though debatable for
some changes of boundary forces during a collapse. An application to the onset of
avalanches is shown in figure 11 (Gudehus 1993). The unflooded part is replaced by a
surface pressure, p, which increases linearly from the upper edge. The water pressure
in the soil and near the slope is taken as hydrostatic. The field of void ratios, e, is
estimated from observations, or assumed to be uniform for simplicity. The field of
the skeleton stress tensor, Ts, is constructed so that at least equilibrium holds and
statical limit conditions are not violated. This means that the horizontal skeleton
pressure, psx, has to be estimated. The simplest collapse mechanism or kinematic
chain is a linear distribution of velocity, v, in the triangle of figure 11. Hill’s criterion
for instability reads

Ëk = −
∫
T̊sD dV.

Herein, D is from the gradient of v, and T̊ s is from D, Ts and e by the constitutive
relation.

If the Ts components increase linearly from the slope edge as with a Rankine
stress field, and if the relative void ratio, re = (e − ed)/(ec − ed), is assumed to
be uniformly distributed, the integral for Ëk is reduced to a simple product. This
collapse condition has been verified by model tests as shown in figure 1 (Raju 1994).
The calculations show that the void ratio for spontaneous liquefaction is noticeably
influenced by the lateral skeleton stress psx. This depends on the sequence of filling
(as has already been remarked by Darwin (1883)). With realistic estimates of psx,
and of course of e, a documented field collapse could be explained in this manner.
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Figure 12. A hypoplastic pure shear wave.

Some improvements to this approach have, meanwhile, been worked out. Skele-
ton stress fields have been estimated by means of finite elements, and excess pore
pressures can also be allowed for. The test velocity field is not restricted to the one
in figure 11, and volume changes made possible by gas bubbles are also allowed for.
‘Hot spots’ with a positive rate of excess of kinetic energy could thus be found under
the slope, indicating where an avalanche tends to start.

We have not stuck to the idea of a kinematic chain which starts simultaneously
within the considered part of the ground. Instead of a kinematic chain, one has to
imagine a chain reaction which spreads within a characteristic time. Only if distur-
bances are spread throughout the body in a far shorter time than the one needed
for the onset of collapse, may a simultaneous kinematic chain be assumed. This is
the case for small-scale model tests, but certainly not for field dimensions exceeding
100 m.

We have, therefore, analysed propagation of waves in the ground by using our
constitutive relations (Osinov & Gudehus 1996). We started with a plane pure shear
wave corresponding to fully saturated undrained ground (figure 12). An impulse is
defined by an increase followed by a decrease in the shear velocity vy at x = 0 in an
interval ∆t. The head front is propagated with a speed ch, the tail with a generally
different speed ct. Afterwards, the skeleton stress components are changed, and in
particular the skeleton pressure, ps, is reduced. The case of ch < ct means that
the tail front reaches the head front at a certain distance, beyond which permanent
changes of state are negligible. This may be called a stable hypoplastic wave. In the
case ch > ct (illustrated in figure 12), the range of reduction of ps increases without
limit; this may be called an unstable propagation. ct = 0 means loss of hyperbolicity,
i.e. the tail front is not propagated further. This is a transition to flow that may be
called spontaneous liquefaction (comparable to a row of standing dominoes kicked
from one end). The condition for ct = 0 coincides with Hill’s condition, Ëk = 0, in
this case.

The propagation of plane shear waves with volume changes has also been analysed
(see figure 13). Volume changes without drainage are possible with gas bubbles and
are caused by dilatancy or contractancy. A shear impulse introduced at x = 0 by an
increase of vy thus induces a longitudinal wave, displacement in the x-direction lead-
ing to permanent volume change which travels away in the x-direction with a higher
speed. Various combinations have been analysed thus, with the aid of hypoplasticity
and with realistic results (Osinov 1997).
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Figure 13. A hypoplastic shear wave with induced longitudinal wave.

Figure 14. Proposed evolution towards the onset of an avalanche.

Of more fundamental importance is the loss of hyperbolicity, which can occur in
three different ways. Zero speed of propagation can occur even without the constraint
of zero volume change, and the requirement for this is close to Hill’s criterion. With
higher skeleton density and stresses close to statical limit states, a stationary discon-
tinuity is achieved that can be understood as the onset of shear localization. With
rather low skeleton density and shear stresses halfway between zero and statical limit
values, a so-called flutter instability can be obtained. This cannot yet be fully inter-
preted in a physical sense. However, the autogenous generation of mechanical waves
(or spontaneous acoustic emission), which has sometimes been observed in loose,
nearly saturated sand deposits, indicates that a kind of flutter can really occur.

The methods previously presented do not fully explain, or even predict, the onset of
sand avalanches. A more qualitative picture is given in figure 14, which will hopefully
lead to better quantitative understanding. Pulsations of atmospheric pressure and
water level can lead to an increase of pore pressure if the required consolidation
time exceeds the pulsation time (A). Disturbances by machines, impacts, etc., cause
a further cumulative increase of excess pore pressure (B). Thus, a region near the
slope with a possible excess of kinetic energy for certain velocity fields is generated
or increased (C). If a part of this region is liquefied by some skeleton rearrangements,
then the necessary stress redistribution leads to an extension of the collapsible region
(D).

Steps A–D can be analysed in principle as a sequence of wave propagations leading
to a reduction of skeleton pressure in each case. The propagation of shear waves
becomes impossible with decay of the skeleton, indicated by ps = 0, which is not the
same as ct = 0 introduced in figure 12. Only P-waves can then be propagated. Their
speed is dictated by the fraction of gas bubbles, αg; cp can drop from ca. 1500 m s−1
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for αg = 0 to ca. 30 m s−1 for αg = 0.1. The gas bubbles are no longer confined by
a grain skeleton and they therefore rise in the suspension. They accumulate at the
roof of the suspension bubble formed by the grain skeleton above (E). A gas cushion
is thus formed with a lower sliding resistance than water. It tends to spread due to
further stress redistribution as long as it does not break through to the surface.

A detailed investigation of the gas cushion has not yet been made. There is at
least some field evidence for its existence. In one avalanche in East Germany that
was released by blasting, a carpet of gas bubbles appeared at the free water surface
and the flow came to a stop. The backanalysis of some mud avalanches in mountain
regions has led to flow speeds which indicate a temporarily lower sliding resistance
than with pure water. On the other hand, a spread and flattened debris flow was
sometimes stopped by fence poles. They presumably released a gas cushion.
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